Subscribe / Unsubscribe Enewsletters | Login | Register

Pencil Banner

Researchers clear final quantum hurdle

Byron Connolly | Oct. 6, 2015
Engineers have built a quantum logic gate in silicon for the first time.

Researchers at the University of New South Wales say they have cleared the final hurdle to making silicon quantum computers a reality.

Engineers have built a quantum logic gate in silicon for the first time, making calculations between two qubits of information possible.

Andrew Dzurak, Scientia professor and director of the Australian National Fabrication Facility at UNSW, said on Tuesday that the discover was a game changer.

"We've demonstrated a two-qubit logic gate - the central building block of a quantum computer - and significantly, done it in silicon. Because we use essentially the same device technology as existing computer chips, we believe it will be much easier to manufacture a full-scale processor chip than for any of the leading designs, which rely on more exotic technologies.

"This makes the building of a quantum computer much more feasible, since it is based on the same manufacturing technology as today's computer industry," said Dzurak.

Until now, it has not been possible to make two quantum 'bits' talk to each other, and create a logic gate using silicon. The UNSW team - working with Professor Kohei M. Itoh of Japan's Keio University - have done that for the first time.

This means that all of the physical building blocks for a silicon-based quantum computer have now been successfully constructed, allowing engineers to finally begin the task of designing and building a functional quantum computer.

The UNSW team reconfigured the transistors that are used to define the bits in existing silicon chips and turned them into qubits.

"The silicon chip in your smartphone or tablet already has around one billion transistors in it, with each transistor less than 100 billionths of a metre in size," said Dr Menno Veldhorst, a UNSW research fellow and lead author of an article published about the discovery in Nature.

"We've morphed those silicon transistors into quantum bits by ensuring that each has only one electron associated with it. We then store the binary code of 0 or 1 on the spin of the electron, which is associated with the electron's tiny magnetic field," he said.

The UNSW team had recently patented a design for a full scale quantum computer chip that would allow for millions of qubits, all doing the types of calculations that have just been demonstrated.

UNSW's Dzurak said the team now needed to identify the right industry partners to work with to manufacture the full-scale quantum processor chip.

The university believes a full-scale quantum processor would have major applications in the finance, security and healthcare sectors. This will allow the identification and development of new medicines by accelerating the computer-aided of pharmaceutical compounds, and aid in the creation of lighter and stronger materials from consumer electronics to aircraft.

 

1  2  Next Page 

Sign up for CIO Asia eNewsletters.