Subscribe / Unsubscribe Enewsletters | Login | Register

Pencil Banner

Review: Dell Compellent storage delivers flash speeds at disk prices

Matt Prigge | Dec. 12, 2013
Dell's latest update to the Compellent Storage Center includes a novel approach to tiered SSDs, but it comes with caveats

To combat these two problems, both kinds of SSDs -- SLC and MLC -- are typically equipped with more raw capacity than they advertise. This allows the device to spread out write operations over a larger number of cells, which increases overall device endurance and gives the device more cells to keep empty to absorb large write workloads. This slack capacity and the intelligence built into the SSD's controller to manage it are what really separate consumer SSDs from those used in enterprise storage devices. (They also explain the capacity differentials you'll find when you shop the two markets.)

Further, SLC and MLC devices are fundamentally different in that SLC devices store only a single bit per cell while MLC devices store two or more bits per cell. This means that SLCs use fewer transistors per cell as compared to MLCs, but more transistors to store the same amount of data. Thus, SLCs can sustain a much larger write workload (usually 25 to 30 full writes per day versus three per day for MLC), and it will absorb writes three to five times faster, but are also substantially smaller and more expensive than MLCs. However, SLC and MLC SSDs are nearly equal in terms of read performance (with MLC perhaps 2 to 3 percent slower) -- a fact that's crucial to understanding Dell's approach to flash tiering.

The Compellent's secret sauce
Even before its acquisition by Dell in 2011, the Compellent system's main claim to fame was its Data Progression (DP) tiering software. DP's job is to free up capacity in faster and more expensive tiers of storage by moving data into progressively slower and more economical tiers.

For example, suppose your Compellent array consists of a top tier of fast, expensive 15,000-rpm SAS disks and a bottom tier of much larger, slower, and less expensive 7,200-rpm NL-SAS disks. Unless you configure it not to, the array will split incoming data into pages and write them across the disks in the top tier. Because Compellent arrays implement RAID at the page level, your array can choose which RAID level to use on a per-page basis. Since writing in RAID10 is faster than RAID5 or RAID6 (given that only two write operations are required and no parity must be computed), it will use RAID10.

However, top-tier disk capacity is typically limited and fairly expensive. The array won't want to leave that storage sitting there for long unless there's a good reason to. That's where Data Progression comes into play. At some point every day (7 p.m. is the default) DP will run as a background process on the array, moving data to different tiers and changing the RAID level based on how heavily the data has been used and what policies you have set. DP will even differentiate between the faster outer rim of NL-SAS disks versus the slower inner tracks, creating a sort of tier within a tier (Dell calls this licensed feature FastTrack).


Previous Page  1  2  3  4  5  6  Next Page 

Sign up for CIO Asia eNewsletters.