Subscribe / Unsubscribe Enewsletters | Login | Register

Pencil Banner

IBM claims spintronics memory breakthrough

Lucas Mearian | Aug. 13, 2012
In a paper to be published in the scientific journal Nature this week, IBM researchers claim to have had a huge breakthrough in spintronics, a technology that could significantly boost capacity and lower power use over today's memory and storage devices.

For example, NAND flash products already use circuitry that is less than 20 nanometers in width, which is approaching atomic size. Spintronics could surmount this memory impasse by harnessing the spin of electrons instead of their charge.

The new understanding of spintronics can not only give scientists unprecedented control over the magnetic movements inside devices, but also opens new possibilities for creating more energy efficient electronic devices.

IBM is not alone in its pursuit of spintronics technology research.

Three years ago, physicists from the Institute of Materials Physics and Chemistry in Strasbourg, France, built new laser technology on the foundation of spintronics and won the 2007 Nobel physics prize for the effort.

The French physicists discovered a way to use lasers to accelerate storage I/O on hard discs by up to 100,000 times current read/write methods.

A problem with spintronics had been the slow speed of magnetic sensors that are used to detect bits of data. But according to the 2007 French study, published in the scientific journal Nature Physics, the team used a "Femtosecond" laser, which produces super-fast laser bursts to alter electron spin, speeding up the read/write process.

IBM's researchers said their breakthrough opens the door for efforts to create transistors and non-volatile storage that would use considerably less power than today's NAND flash technology.

However, one rather large sticking point is that researchers haven't been able to produce their results at room temperature, an important requirement for producing a viable processor or memory device. Currently, experiments take place at very low temperatures of 40 degrees Kelvin, or -233 Celsius, -387 Fahrenheit.

"There's no device for this yet, but it's a breakthrough in that we now know how to increase the electron's spin lifetime in channel," Sails said. "Next, one thing we'd really like to do is increase that [spin lifetime] by a factor of 30."


Previous Page  1  2 

Sign up for CIO Asia eNewsletters.