Subscribe / Unsubscribe Enewsletters | Login | Register

Pencil Banner

Google Glass takes flight at Boeing

Al Sacco | July 14, 2016
Aerospace giant Boeing recently completed a successful Google Glass pilot, reducing production time of aircraft 'wire harnesses' and chopping related error rates in half. The company also says it is 'very close' to launching a live smartglass system.

Boeing, the largest aerospace company on the planet, builds a lot of planes. The organization manufactures aircraft for airlines and governments in more than 150 countries. And every one of those planes contains thousands of wires that connect its various electrical systems.

These complex webs of wires don't weave themselves, and putting all the parts together is a monumental task. Each week, thousands of Boeing's U.S. workers construct "wire harnesses," or "people-size portions of the electrical systems" designed to help them join the various shapes and sizes of wires, according to Kyle Tsai, a research and development (R&D) engineer with Boeing Research and Technology (BRT), the company's central R&D organization. "Wire harnesses are very complex and very dense, and the technicians have to use what are, in essence, roadmaps to find the attachment points and connector pins," Tsai says. "There are so many that it can be information overload at times."

Today, Boeing wire-harness techs mostly use PDF-based assembly instructions on laptops to help them find the appropriate wires, cut them to size and then connect the components via wire harnesses. Techs must constantly shift their attention back and forth between on-screen roadmaps and harnesses. And they use a lot of CTRL+F keyboard commands to find specific wire numbers, which means techs have to frequently use their hands to manipulate computers and navigate wire documentation. 

boeing wire harness assembly 

A Boeing technician works on a lengthy aircraft wiring system.

For 20 years, Boeing had been looking for a hands-free system that used some sort of wearable computer to reduce production time and related errors. The company experimented with an augmented reality (AR) application and "head-mounted, see-through display" called the Navigator 2 as early as 1995, according to the 2008 book Application Design for Wearable Computing. But effective and affordable hardware just didn't exist … until Google released its Glass smartglasses. In the past, "everything was hardware constrained: battery life, screen, weight," according to Jason DeStories, another R&D engineer with BRT. "Now we're in a era where hardware is no longer the constraint."

Smartglasses get off the ground at Boeing

When Google released the first "Explorer Edition" of Glass in the fall of 2013, DeStories says his manager purchased a few of the early smartglasses and asked him to start tinkering, to see if Glass might be the hardware the company needed. 

In early 2014, DeStories and his team got to work on a demo application designed specifically for wireless harness assembly. The challenge, according to DeStories: "How do we get that information to the technician right at the time they're doing it, in the shortest manner possible, with the simplest user input?" The goal was to "reduce [technician's] time from intent to action," he says.


1  2  3  4  5  Next Page 

Sign up for CIO Asia eNewsletters.