Subscribe / Unsubscribe Enewsletters | Login | Register

Pencil Banner

Nvidia GeForce GTX 1080 review: The most badass graphics card ever created

Brad Chacos | May 18, 2016
Hail to the new king of graphics cards, baby.

gp104 sm block diagram
A block diagram of the Pascal GPU’s Streaming Multiprocessor design. (Click for larger image). 

And pick up your jaw! The GTX 1080 indeed rocks utterly ridonkulous 1,607MHz base clock and 1,733MHz (!!!!) boost clock speeds—and that’s just the stock speeds. We managed to crank it to over 2GHz on air without breaking a sweat or tinkering with the card’s voltage. Add it all up and the new graphics card blows its predecessor out of the water in both gaming performance and compute tasks, leaping from 4,981 GFLOPS in the GTX 980 all the way to 8,873 GFLOPS in the GTX 1080.

Diving even deeper, each Pascal Streaming Multiprocessor (SM) features 128 CUDA cores, 256KB of register file capability, a 96KB shared memory unit, 48KB of L1 cache, and eight texture units. Each SM is paired with a GP104 PolyMorph engine that handles vertex fetch, tessellation, viewport transformation, vertex attribute setup, perspective correction, and the intriguing new Simultaneous Multi-Projection technology (which we’ll get to later), according to Nvidia.

A group of five SM/PolyMorph engines with a dedicated raster engine forms a Graphics Processing Cluster, and there are four GPCs in the GTX 1080. The GPU also features eight 32-bit memory controllers for a 256-bit memory bus, with a total of 2,048KB L2 cache and 64 ROP units among them.

gp104 gpu block diagram
A block diagram of the full GP104 Pascal GPU inside the GTX 1080. (Click for larger image).

That segues nicely into another technological advance in Nvidia’s card: the memory. Despite rocking a 256-bit bus the same size as its predecessor, the GTX 1080 managed to push the overall memory bandwidth all the way to 320GBps, from 224GBps in the GTX 980. That’s thanks to the 8GB of cutting-edge Micron GGDR5X memory inside, which runs at a blistering 10Gbps—a full 3Gbps faster than the GTX 980’s already speedy memory. How fast is that, really? Nvidia’s GTX 1080 whitepaper sums it up:

“To put that speed of signaling in context, consider that light travels only about an inch in a 100 picosecond time interval. And the GDDR5X IO circuit has less than half that time available to sample a bit as it arrives, or the data will be lost as the bus transitions to a new set of values.”

Implementing such speedy memory required Nvidia to redesign both the GPU circuit architecture as well as the board channel between the GPU and memory dies to exacting specifications—a process that will also benefit graphics cards equipped with standard GDDR5 memory, Nvidia says.

 

Previous Page  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  Next Page 

Sign up for CIO Asia eNewsletters.