Subscribe / Unsubscribe Enewsletters | Login | Register

Pencil Banner

HP's giant Proliant challenges big iron from IBM, Oracle

Tom Henderson | July 1, 2014
HP's new Proliant challenges big iron from IBM and Oracle with 60-core, 4U, high-performance hardware

HP has stuffed an insane amount of the server CPUs and memory components-plus-cooling in the front of the chassis to provide space in the rear. What was pushed out?

The base prices for the machines reflect no drives. Yes, they can be installed in a Small Form Factor (SFF) cage inside. In a fit of modernity, however HP believes you probably won't put many drives inside and the drives aren't easily accessible from outside the chassis for hot swap anyway—the front is covered by the four aforementioned fans. The drives just aren't as easy to service as exterior-mounted drives. Yes, you can get drives, but you might want to boot from iSCSI or an internally installed HBA.

Kickstarting The Battleship
You can take a coffee break while waiting for the DL580 Gen8 to boot. In our testing and rebooting, it took seven minutes. Should you use the supplied front panel or rear panel connections to a crash cart/console, the system boots to numerous options, including a rudimentary GUI. Function key selections permit alternate boots, although we use PxE, which worked well.

The BIOS suits UEFI boots, but the UEFI can be disabled to accommodate OS installations that don't want the draconian controls of UEFI. The media installed locally, or presented through interface cards installed in the chassis, can be pre-selected for setup for Windows, RedHat, etc. HP's iLO also works here, so chassis monitoring through boot can be controlled remotely.

We were supplied with 256GB of memory. However, the current max is 3TB, and with new memory sticks not yet available, the total could be 6TB. This means with 60 available cores, each core could conceivably be configured with 100GB of DRAM per. This is an astonishing possible amount of memory in any chassis, and this one's just 4U high.

HP also includes legacy memory, cache, CPU cache and PCIe bus traps, most of which must be supported by operating systems or used in conjunction with HP's Active Health APIs, HP's iLO Intelligent Management System and/or third-party hooks.

The device also has hardware detection fault monitoring (and perhaps correction where do-able), plus Advanced Memory Protection that ostensibly recovers from CPU, cache, and memory problems. In our test scenario, with up to 60 cores running at clock speeds approaching 3Ghz, it was virtually impossible to inject sludge somewhere into the system in order to test the efficacy of HP's scheme.

Hypervisors and operating systems could benefit from this information to ensure transactional integrity in and among operations that it supports. With luck, a brave hypervisor maker will start to utilize this information, and it would be lovely to track results in a way that would allow decision support for taking a machine out of service should its failures reach a certain threshold.


Previous Page  1  2  3  4  5  Next Page 

Sign up for CIO Asia eNewsletters.