Subscribe / Unsubscribe Enewsletters | Login | Register

Pencil Banner

HP takes giant leap in server design

Tom Henderson | Feb. 11, 2014
Moonshot hyperscale server brings high density and low power consumption to the data center.

We made the Moonshot swallow CentOS, which is the OS most used in HP's documentation examples. The procedure used was: get one of the 45 cartridges to be the "master cartridge," then use the master to PxE provision each of the nodes in whatever flavor combinations are desired. We provisioned the cartridges up as fast as we could, which didn't take long, as the internal Gigabit Ethernet switch is non-blocking and most of installing a distro amounts to copying unneeded, seldom used, once-in-a-lifetime-if-we're lucky stuff. Each cartridge consumes about 11.3 watts at maximum, not including chassis overhead, as measured by our handy Kill-A-Watt meter.

We then used combinations of an internal VSP-connected (Virtual Serial Port, analogous to watching VMware or RDP-like remote instance booting) master node, so as to prep it to become the image source for the 44 other nodes. The combinations on each cartridge can be: whole thing is used by one OS, split into two, or if you want to play around, divide up resources using virt or another non-VT-compatible virtualized instance.

One node failed early. We updated the firmware, a fairly simple process, but something else was wrong, and HP overnighted a working replacement. This is where the ability to use a virtual serial port to watch cartridge boot-time messages came in handy.

Tests: Processing Power
The Atom processor used in the cartridges isn't a Xeon-family CPU and so lacks tremendous processing power, but it's reasonably fast.

We compared the Moonshot cartridge with several other servers, desktop units, and tried to find where its musculature fits. We tried to match memory, number of daemons running (killing and adding them to match), and used a Linux physical drive to ascertain disk speed using LMBench3, a tired but reasonable benchmark for Linux boxes. We abbreviated the test, but used equal memory and other settings across the types of systems we tested for results.

For this test, each cartridge was treated as available in whole to LMBench3, which was compiled with gcc. We limited the VMs we tested to 1-VCPU, and made the daemons equal, and used default settings, otherwise. We also used the Phoronix test suite to gauge cartridge speed and compare it to several types of dual-core systems to gauge speed.

Bottom line: The cartridges aren't state of the art Xeons in terms of speed, and they're not so slow, given their low-power consumption characteristics.

Conclusion
HP aptly calls Moonshot, "a software-defined server", and we agree. In a way, as Moonshot is delivered "raw", it's both an industrial controller but also a small server farm-in-a-box and lends itself to the "maker" world as well as green server consumer.

 

Previous Page  1  2  3  4  Next Page 

Sign up for CIO Asia eNewsletters.