Subscribe / Unsubscribe Enewsletters | Login | Register

Pencil Banner

HP takes giant leap in server design

Tom Henderson | Feb. 11, 2014
Moonshot hyperscale server brings high density and low power consumption to the data center.

When it comes to data centre servers, the goal is to pack the most power into the smallest, most efficient package. HP has leapfrogged past traditional blade servers with its new Moonshot line that delivers high density and low power in a space-saving "cartridge-based" chassis.

We received the first publicly reviewable unit in the Moonshot series and at the end of testing we were exhausted, but also in awe. The enormous effort in initial configuration, we found, pays handsomely.

Strategically, HP has launched Moonshot as a response to the white-box server makers who are grabbing an increasing share of the server market, especially among cloud service providers and large enterprises. Moonshot falls into the general category of hyperscale computing, which means it's designed for data center and Big Data environments where the ability to quickly add large numbers of servers is important.

So, what exactly is it? For about $62,000, you get 45 server cartridges, a 4.3U chassis (7.5 inches tall), power supplies, management unit, a crossbar internal switch (ours had two), an uplink 10Gigabit Ethernet controller, power cords, and rack mounts. In other words, a server farm in a box.

While one might have expected low-power ARM processors, HP went with x64 dual-core Intel Atom CPUs. Each core has two threads. And each cartridge came with a 1TB conventional hard drive along with 8GB of DDR3/1333MHz memory. SSD options are available, too.

Another interesting wrinkle: Only Linux distributions are supported: Red Hat, CentOS, Fedora, and Ubuntu. No Windows.

When it comes to density, Moonshot hits its target. Eight Moonshot chassis fit into a 42U rack for a total of 360 discrete server cartridges. That full rack would consume only 9,600 watts, representing a small fraction of power density/heatstack removal needed by an equivalent density of 42-1U servers containing four-CPU/four-core servers.

Inside Moonshot, there are four high-speed buses. The network I/O is handled by a Broadcom uplink chassis adapter with six-10G Ethernet SFP+ connectors, for a gross total of 60GB of Ethernet. Also on the rear of the chassis are power supply connections, an HP Integrated Lights-Out (iLO) GBE port for chassis control (but not switch control, initially), serial ports, and a microSD card drive.

In a typical blade server chassis, all of the blades connect to one backplane for networking and storage. With Moonshot, cartridges are managed into three total zones: two zones of equal size, and one smaller zone. One or two Ethernet switches can be installed internally. HP's Cluster Management Unit software was obtained for purposes of testing, and we feel that purchasers of the Moonshot system will very likely want to license the CMU software.

Each cartridge is of a uniform type, not shielded with metal casings as blades often are, and each Moonshot server is homogeneously built of a specific cartridge type. The cartridges look very much like single-board computers with a bus. As the cartridges aren't shielded, airflow through the chassis lacks the need for channels and barriers to route airflow. The cartridges use comparatively little power, and the overall chassis, including switches and infrastructure use less than 1,200W in aggregate power consumption. We tested at peak, the unit pulled 1,174W.


1  2  3  4  Next Page 

Sign up for CIO Asia eNewsletters.