Subscribe / Unsubscribe Enewsletters | Login | Register

Pencil Banner

3D printing makes its move into production

Robert L. Mitchell | Aug. 14, 2014
The use of 3D printing for finished goods is about to disrupt manufacturing and supply chains in a big way. Heres why, and heres how IT will be critical to that transition.

"Tooling is very expensive, so we're finding a nice benefit from that," says Harold Sears, 3D printing technical expert. Ford also uses 3D printers to build intake manifold prototypes that can be tested for up to 100,000-mile cycles. A 3D-printed manifold prototype costs $3,000 to build over four days — versus $500,000 and four months using traditional manufacturing methods.

Ford used a 3D printing process to create a sand-cast mold used to produce cast-metal parts, including this one for Ford's 2.7-liter EcoBoost V6 cylinder block core, used in the 2015 F-150 truck. Source: Ford.

Ford also uses the technology to build "bridging parts" that can be included in nonproduction vehicle assembly until conventionally manufactured parts are available, and as a way to manufacture parts made out of more than one material in a single step. For example, a handle that includes both hard plastic and soft rubber components would usually require a two-step process when using conventional manufacturing techniques.

Like Lockheed Martin, Ford is looking at using 3D printing to produce some replacement parts on demand. "Do we just keep the electronic data for that part and produce it as needed? You'll see a lot more of that in the future," Sears says. And he hopes to find low-volume applications where his team can do 3D-printer-optimized designs that reduce weight and cost of the final product.

But, he adds, the materials are still expensive, they still have a way to go to be able to mimic the material properties of today's production parts, and engineers aren't used to designing for additive manufacturing. "It could take years for people to become proficient and do the difficult geometry," he says.

But the accessibility of low-cost desktop 3D printers on which engineers can experiment, coupled with new engineering recruits fresh out of school who are already familiar with 3D design and build concepts, is helping to accelerate that process. "Our newest generation of engineers and designers has grown up thinking in three dimensions," says Betza. By providing access to desktop 3D printers, Gardner adds, Lockheed Martin is able to "bring this capability forward to hone skills and build confidence."

At Ford, Sears is content for now to make parts that are more usable in prototype applications. Most of that activity is self-contained, with little IT involvement. "But in the future there will be a lot more involvement if models lend themselves to downloading a data file and printing it on your own 3D printer."

The 3D-printed plastic tool helps install pipes in an Airbus aircraft. The tools are strong and also less likely to scratch the objects being installed, the company says. Source: Airbus

 

Previous Page  1  2  3  4  5  Next Page 

Sign up for CIO Asia eNewsletters.