Subscribe / Unsubscribe Enewsletters | Login | Register

Pencil Banner

3D printing makes its move into production

Robert L. Mitchell | Aug. 14, 2014
The use of 3D printing for finished goods is about to disrupt manufacturing and supply chains in a big way. Heres why, and heres how IT will be critical to that transition.

The process of migrating to 3D-printed parts will likely happen organically: 3D-printed parts will be available to replace those that were manufactured using 3D printing in the first place. But the business case for going back and redesigning, say, existing injection molded parts solely for the sake of just-in-time 3D-printed spares will be more difficult to cost-justify.

A better build

Advances in materials used in 3D printing are also widening additive manufacturing's appeal. Oxford Performance Materials uses 3D printing to build cranial, face and spine implants using a proprietary, FDA-approved thermoplastic called PEKK. The material is bio-compatible, has the strength of aluminum and is designed to encourage adjacent bone to grow into it in order to fuse it to the rest of the cranium or other bone structures.

Oxford Performance Materials (OPM) claims that this FDA-approved cranial implant, built using 3D printing techniques and a proprietary thermoplastic material called PEKK, is the largest cranial prosthesis ever implanted into a human being. Source: OPM.

The traditional material used for these types of prosthetic implants, titanium, is stiff and can wear down adjacent bone over time, leading to the need to have joints reworked after a number of years. The 3D-printed, thermoplastic prosthesis is more compatible. "You get a perfect fit, lower unit cost and reduced time in the operating room," says Oxford Performance Management (OPM) CEO Scott DeFelice.

The company recently manufactured one of the largest cranial implants ever used. "It looks like a football helmet," DeFelice says. Building the prosthesis out of titanium would have required assembling it from three or four pieces and fusing those together, but with 3D printing OPM could manufacture it as a single part.

That quality also makes 3D printing attractive in the aerospace industry, where weight matters. "If you have a complex assembly you can reduce the parts count dramatically," says Carson. And because it can add material only where needed for structural support, Airbus has been able to come up with what Carson calls "bionic" shapes.

3D printing processes have also helped Lockheed Martin develop unique stainless steel alloys using nano-particle additives, says Gardner. The 3D printing process, which involves melting successive layers of powdered metal, creates a rapidly cooling "weld puddle" that locks in micro-structures that wouldn't be possible using conventional foundry techniques. "This has implications for the entire alloy industry," he says. It may make ships more resistant to corrosion, bridges more tolerant of damage, skyscrapers taller and safer, and pressure vessels better able to perform, as well as improving the thermal and electrical performance of spacecraft, according to Gardner.

The speed barrier

With speed requirements measured in minutes rather than hours, and extreme high-volume requirements, Ford Motor Co. can't use 3D printing to manufacture production parts. But as 3D printer materials have improved in performance and durability, Ford has increased its use in several areas. For example, it uses 3D printing processes to make the tooling used to create production parts.

 

Previous Page  1  2  3  4  5  Next Page 

Sign up for CIO Asia eNewsletters.