Subscribe / Unsubscribe Enewsletters | Login | Register

Pencil Banner

Wanted: 40 trillion gigabytes of open storage, stat!

Jon L. Jacobi | Jan. 30, 2013
Gigabytes and terabytes are so passé. It's soon going to be a zettabyte world thanks to all the digital data--images, books, music, movies, video, documents, maps, you name it--that we collect and engage with throughout our lives.

Two technologies still under development could a deliver a tenfold or greater increase in areal density: The long promised (but yet to be commercialized) Heat Assisted Magnetic Recording (HAMR) and patterned media such as Self-Ordered Magnetic Arrays (SOMA).

HAMR uses current read/write technology in conjunction with a laser to heat the media. The heat is required to facilitate writing to disk-coating compounds such as iron/platinum alloys that are capable of greater areal density than today's compounds, but are less magnetically malleable until heated. Eight nanometer and even 3nm particle separations are envisioned. HAMR still remains in development, however, and we shouldn't expect to see anything deployed sooner than two years.

Where today's magnetic layers involve magnetic particles that can be oriented to represent data, in HAMR these particles are arranged rather chaotically. This makes them difficult to pack any tighter than they currently are. But patterned media, such as SOMA (a group of nanoparticles that can be induced to align in an ordered fashion), pack magnetic bits much tighter by eliminating the random shapes and spacing of the current technology. It all sounds great on paper, but deploying this technology en masse at an affordable price will be a challenge.

In terms of personal data storage, hybrid hard drives--which marry high-speed flash memory to traditional spinning discs--will likely make a greater impact on our lives than any fancy new technology cooked up in an R&D lab. Hybrid drives deliver the storage capacities of traditional hard drives along with some of the performance benefits of SSDs, but at only twice the price per gigabyte of standard hard drives.

Seagate is already in the hybrid drive game, and Toshiba and other drive manufacturers have recently weighed in with plans for hybrid drives. Toshiba sent samples of its 1TB and 750GB hybrid drives last fall to manufacturing partners. Toshiba expects 3 million of the hybrid drives to be produced by the end of 2014. However, unless the products can approach the tangible kick in performance delivered by SSDs, they may be relegated to being a stopgap solution.

The future of flash memory: speed and price reductions

Smartphones, tablets, USB flash drives, digital cameras, video recorders and SSDs all rely on fast, rugged, nonvolatile NAND flash memory. Gartner predicts that yearly NAND sales will reach 200 petabytes by 2016, up from just 50 petabytes in 2012. Much of the memory will go into the SSDs for servers and desktop PCs, as well as laptops, tablets, and other mobile devices.

The difference in speed between an SSD and a fast hard drive is obvious even to the untrained eye. In PCWorld's December 2012 roundup, the fastest consumer SSDs read at almost 500 MBps and wrote at over 600 MBps. Meanwhile, a high-end, 10,000-rpm hard drive averaged around 200 MBps reading and writing. That's a three-fold advantage in performance, and enterprise-grade SSDs are even faster.

 

Previous Page  1  2  3  4  5  6  Next Page 

Sign up for CIO Asia eNewsletters.