Subscribe / Unsubscribe Enewsletters | Login | Register

Pencil Banner

These IoT networks are 'unapologetically slow'

Stephen Lawson | Jan. 12, 2015
LPWAN is designed primarily for M2M (machine-to-machine) networking, which is already widely used for things like tracking assets, monitoring industrial equipment and collecting data from smart meters.

While the International CES this week emphasized home networks and LTE-equipped cars, a different kind of network that can send tiny messages across a city crept toward a future that some people think may be huge.

The concept is low-power, wide-area networks (LPWANs), which make up for extremely low data rates by going farther than a cellular signal and working in tiny devices that can last months on a small battery. They won't carry TV shows or virtual reality games, but they may help to grease the wheels of global commerce and government. Some wearables may get in on the act, too.

LPWAN is designed primarily for M2M (machine-to-machine) networking, which is already widely used for things like tracking assets, monitoring industrial equipment and collecting data from smart meters. While a lot of those tasks are handled by cellular radios today, LPWAN will be the dominant form of wide-area wireless for M2M by 2022, according to Jim Morrish, chief research officer at Machina Research.

Like most new networking technologies, LPWAN comes in lots of different forms and hasn't settled into a standard groove that everyone agrees on. At CES, companies backing one variant announced they had formed a new group, the LoRa Alliance, to standardize LPWAN. But it could be a long time before that approach or any other emerges as a clear winner. That's a familiar refrain in the Internet of Things these days.

"I expect that the overall IoT networking space will remain very confused for several years, and at least 10 different networking technologies will gain significant traction for IoT applications," Gartner analyst Nick Jones said via e-mail. Long-range IoT networks are even more immature than other parts of that unsettled industry, he wrote. "I see the market in what you might call a land-grab phase. Everyone is trying to get ahead to establish their presence."

LPWANs solve the problem of how to reach large numbers of connected devices without having to saddle them with relatively large and energy-hungry cellular radios. Those devices, such as sensors, smart meters and location trackers, may have to stay on for months or years but don't have room for bulky batteries.

Fortunately, they don't need cellular speed, either, just enough capacity to send small amounts of data. LPWAN speeds may be measured in the hundreds of bits per second or less. The networks primarily use unlicensed frequencies, such as the 900MHz band in the U.S., so they can coexist with cellular networks. They may also be used as backup for cellular to keep devices connected where broadband can't reach.

One advantage of the low data rates on LPWANs is that they don't require as many base stations as cell networks do. With that factor and unlicensed frequencies, the cost of connecting can be dramatically lower. Enterprises buying connectivity for many devices may pay as little as $1 per connection, per year.

 

1  2  Next Page 

Sign up for CIO Asia eNewsletters.