Subscribe / Unsubscribe Enewsletters | Login | Register

Pencil Banner

Directly connected to the Internet of Things

Mark Gibbs | April 26, 2013
Last week I discussed connecting things to the Internet of Things indirectly. This week, what's required for things to be directly connected?

Last week here in Backspin I discussed how real-world "things" that aren't easily augmented with digital instrumentation, such as bicycles, cars and even dogs, can be indirectly connected to the Internet of Things (IoT) using physical ID tags and online proxies. This is, as I pointed out, a powerful concept.

Even more powerful is the potential for new products, including bicycles and cars (dogs, maybe not so much), to be designed from the ground up to include instrumentation and the ability to connect directly to the Internet using more or less real time communications.

There are a few exciting new products that make connecting new things to the IoT relatively easy. For example, Electric Imp sells a device called the Imp, a simple, elegant, low-power and low-cost way to build connectivity into a product.

The Imp incorporates an ARM Cortex M3 SoC (system on a chip) with embedded 802.11b/g/n Wi-Fi (open networks are supported as well as 40- and 128-bit WEP, WPA with TKIP and AES, and WPA2 with AES and mixed along with WPS and WPS-PIN setup but not 802.1x yet) all in an SD card form factor.

The Imp hardware is powerful enough to have its own operating system and its own version of the scripting language Squirrel, which looks a lot like C and JavaScript mushed together.

Getting an Imp connected to the IoT is done using a technique Electric Imp calls "BlinkUp." This method uses a smartphone app to transfer network configuration and credentials for Wi-Fi and cloud services by flashing the phone screen on and off, rather like morse code, which the Imp picks up using an on-board optical sensor.

What's really important about the Imp is that it's cheap to buy and integrate: A basic prototyping board costs $7 and the hardware required to integrate with a vendor's product costs less than $1. This paves the way to add all sorts of devices to the Internet of Things not only easily but cheaply.

But, there's a problem with the Imp's communications strategy: All communications (both to and from the Imp) have to go via the Electric Imp online service (which, by the way, runs on Amazon Web Services). This means that messages between, for example, a smartphone app and an Imp-enabled device could be slow (delayed by online conditions), and if the Imp's local Internet connection is actually down even though the Imp and the smartphone app are on the same network, there's no possibility to control the Imp or read data from it.

Does this matter? You bet it does! Some time ago I reviewed a product that fails due to exactly these problems: Hunter Fan's rather grandly named Universal Internet Thermostat.


1  2  Next Page 

Sign up for CIO Asia eNewsletters.