Subscribe / Unsubscribe Enewsletters | Login | Register

Pencil Banner

Internet2 doubles down on big-science mission

Stephen Lawson | July 18, 2012
Internet2 is refocusing on providing a high-capacity network for pushing the boundaries of science and technology, which could help to foster the next hot Internet application, an executive said at the organization's summer meeting.

Internet2 is building SDN capability into its 100Gbps network. That could help to make it a testbed for new types of networks while also providing for new types of services that Internet2 can offer its member institutions, according to Boyd.

An early use of SDN that Internet2 is developing as a service for its customers is the ability to set up virtual LANs across multiple network segments, Boyd said. This makes higher performance possible over long distances such as across an ocean and two continents, he said.

One emerging tool that SDN helped make possible is FlowVisor, a platform developed by graduate students at Stanford to create "slices" of a network for one particular application or use of the infrastructure. Internet2 and partners, including Indiana University, hope to make FlowVisor more ready for use in production networks by next year, Boyd said. Beyond that, it might form the basis of a service offered over Internet2, he said.

With FlowVisor, researchers exploring totally new ways of using networks could run experimental software in one "slice" of a network while preventing it from taking over the resources that other users on the network need. Researcher Luke Fowler of the University of Indiana demonstrated this capability at the conference, applying controls on the slices of a network that prevented a resource-hungry experimental application called "Nutty Professor" from overloading the network's control system.

Internet2 also hopes to foster the concept of a so-called "science DMZ," which can set scientific applications apart from the rest of the traffic on university networks. Scientists have different needs from casual Internet users, Boyd said: high bandwidth, long sessions and dedicated connections over long distances.

At the same time, science applications don't necessarily require some of the tools needed for average consumer traffic. For example, because the scientists are trusted users, they may not need to go through a firewall. With a special virtual path across the network, data-intensive scientific uses such as exchanging data on the Higgs boson atomic particle can get the performance needed while running over the same physical network as average students' traffic, said Inder Monga, a researcher at ESnet.


Previous Page  1  2 

Sign up for CIO Asia eNewsletters.