Subscribe / Unsubscribe Enewsletters | Login | Register

Pencil Banner

MapReduce could be the server's newest friend

Joab Jackson, IDG News Service | June 16, 2011
In the future, when an administrator does a server build, he or she may be adding a MapReduce library to the usual stack of server, database and middleware software.

The traditional approach also introduces a lag between when the data is produced and when it can be analyzed, which can be a critical shortcoming if the data is time-sensitive in nature.

As an alternative, the researchers proposed placing MapReduce functionality on each server itself, which could analyze the data and ship a much smaller result set back to the centralized data collection point. They dubbed this approach "in-situ MapReduce" (iMR).

"iMR is designed to complement, not replace traditional cluster-based architectures. It is meant for jobs that filter or transform log data either for immediate use or before loading it into a distributed storage system ... for follow-on analysis," the researchers' paper notes.

As a program, iMR would replicate all of the MapReduce APIs (application programming interfaces), and it would carry out the similar functionality of MapReduce, namely filtering data and aggregating the results. It would differ in that it could continually produce analysis, based on the latest data.

The researchers built a prototype of iMR, using the Mortar distributed stream processing software. With iMR, the user would specify the range of data being processed in a given analysis, such as all the data gathered in the past 60 seconds. The user would also specify how often results would be produced and transmitted, such as every 15 seconds.

Logothetis admitted that the Web servers may spend most of their resources doing their intended jobs, namely delivering services to users. But iMR could use the spare cycles left over to crunch the log data.

In their paper, the researchers devised a plan where the organization could establish a trade-off between the speed at which they get the analyzed data with the completeness of the resulting analysis. If an organization wants the analysis quickly, then each server may drop individual log entries during times of heavy usage, leading to less conclusive, but still relevant, results. Whereas a thorough analysis of the data would require a longer period of time, and more server resources to complete.

While in-situ MapReduce may not be beneficial for organizations that run only a handful of servers, it could be valuable to larger operations, such as search engines, social networks and e-commerce sites, Logothetis said.

 

Previous Page  1  2 

Sign up for CIO Asia eNewsletters.