Subscribe / Unsubscribe Enewsletters | Login | Register

Pencil Banner

IoT analytics brings new levels of innovation to new product development

Puneet Pandit, Founder and Chief Executive Officer, Glassbeam, Inc. | July 14, 2015
Studies show that around 40 percent of products fail. But what if product designers could understand what features are most and least popular, which components tend to fail sooner than others, and how customers actually use products versus how designers think they use them?

Studies show that around 40 percent of products fail. But what if product designers could understand what features are most and least popular, which components tend to fail sooner than others, and how customers actually use products versus how designers think they use them? And, what if product developers could then utilize these insights to develop products that perform better, potentially cost less and, most importantly, are aligned with actual customer needs?

Innovative product development teams in pretty much every industry are beginning to look at ways to translate enormous streams of real time machine data into actionable information to improve the product development process by understanding where product innovation is necessary, which features are most desirable, and how to lower their overall cost of ownership.

For some time now, many companies have embedded sensors in their products that are producing huge amounts of information about performance. However, this machine data has traditionally been difficult to collect and analyze, due to both the enormous amounts of data involved and the different types. Data comes in a variety of formats, such as text logs, XML, JSON, CSV or SNMP. There are different data class categories, like event messages, configuration blobs or statistical dumps. Data is likely to be in different protocols, such as email, FTP, SFTP, as a stream or as a batch log file.

But advanced analytics companies have developed new solutions that are able to handle the volumes and disparate types of data involved in real time, making machine data analytics practical and affordable for a much wider range of organizations.

Achieving a single point of truth

In order to develop and market new products most effectively, you need to create a "single point of truth," or a body of data and insights that is comprehensive, accurate and timely.  

These data and insights will provide all disciplines within the company involved in designing, manufacturing and marketing a new product the information they need to make critical decisions product features, pricing, distribution and related functions. Essential elements of an information platform to provide this single point of truth include:

  • A centralized data repository that can capture terabytes of structured and unstructured operational data
  • Analytical tools that can describe and create meaning and relationships between elements in the data
  • Reporting capability on how customers are using existing products, performance information on components within existing products, et al. 
  • Dashboards and similar elements that enable new product development and other teams to create customer analyses and drill downs 

Streetline harnesses machine data

Streetline is a good example of how a company is using what some are calling IoT analytics to build out new products. The company recently launched Streetline IoT Gateway, part of the company's mission to create smart cities and smart campuses. Analyzing the data streaming into the Gateway, Streetline realized they could build a successful business by harnessing smart data and advanced analytics to help cities, universities and campuses provide guidance on available parking and parking enforcement.

 

1  2  Next Page 

Sign up for CIO Asia eNewsletters.